Se viene hablando mucho sobre data mesh, y existen muy buenas explicaciones respecto al tema.
#DataMesh o Malla de Datos, es un término que hace mención a la evolución de los pipelines de datos, abordado desde 4 dimensiones:
- Propiedad y arquitectura descentralizada de datos orientada al dominio
- Datos como producto.
- Infraestructura de datos de autoservicio como plataforma
- Gobierno federado.
Cada principio impulsa una nueva visión lógica de la arquitectura técnica y la estructura organizativa.
Para entender que es un #dominio, sugerimos leer acerca de DDD (domain driven design).
Objetivo de la Malla de Datos
En la actualidad existen 2 grandes modelos de gestión de datos, el #EDW (Datawarehouse) y el #Datalake, y aunque se impulsa un concepto híbrido denominado #lakehouse, la realidad es que sigue existiendo complejidades asociadas a las fallas constantes de los #ETL, un incremento exponencial de los #data #pipelines y eso genera cada día mayor necesidad de administración.
La malla de datos reconoce y respeta las diferencias entre estos dos planos: la naturaleza y la topología de los datos, los diferentes casos de uso, las personas individuales de los consumidores de datos y, en última instancia, sus diversos patrones de acceso. Sin embargo, intenta conectar estos dos planos bajo una estructura diferente: un modelo invertido y una topología basada en dominios y no en una pila de tecnología.- con un enfoque en el plano de datos analíticos.
El objetivo de la malla de datos es crear una base para obtener valor de los datos analíticos y los hechos históricos a escala . La escala se aplica al cambio constante del panorama de datos , la proliferación de fuentes de datos y consumidores , la diversidad de transformación y procesamiento que requieren los casos de uso , la velocidad . de respuesta al cambio .
Modelo de Data Mesh
Descripción de los pilares
- Propiedad y arquitectura descentralizada de datos orientada al dominio: este punto hace referencia a la transferencia de la propiedad de los datos a los responsables de dominio. Un experte de dominio según DDD es aquel con conocimientos específicos sobre un sector/área de la compañia, como gerencias, departamentos, etc. Esta transferencia hace que los expertos de dominios, sean los dueños y por ende se delega en ellos la responsabilidad de asegurar la calidad y seguridad de la data.
- Datos como producto: en este punto, el objetivo es que los dominios sean capaces de generar sus productos de datos. Bajo un concepto de Product Owner, la idea es que cada responsable pueda mantener, validar y mejorar la calidad de la información; buscando que además la información sea colaborativa y pueda ser consumida por diferentes actores interesados.
- Infraestructura de datos de autoservicio como plataforma: este ítem busca la simplificación de la gestión de la plataforma, permitiendo a los usuarios especialistas de dominios poder trabajar sobre la data sin depender de especialistas.
- Gobierno federado: la importancia de la gobernanza no puede quedar de lado. Este punto refiere a la necesidad de cumplir con los puntos de seguridad/compliance/políticas corporativas, con el objetivo de asegurar la privacidad, el cumplimiento normativo y la seguridad.
[popup_anything id=”2076″]